Dominant-negative mutants of cJun inhibit AP-1 activity through multiple mechanisms and with different potencies.

نویسندگان

  • P H Brown
  • S H Kim
  • S C Wise
  • A L Sabichi
  • M J Birrer
چکیده

We have previously described a dominant-negative mutant of cJun that lacks the transactivation domain (TAD) of cJun and prevents AP-1-mediated transcriptional activation by quenching endogenous Jun or Fos proteins. We now report the development of a panel of cJun mutants that have inactivating mutations in the TAD, DNA-binding domain (DBD), or leucine zipper domain. These mutants are all unable to activate transcription, but only TAD and DBD mutants function in a dominant-negative fashion by inhibiting both cJun-induced transcriptional activation and transformation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in ras-transfected rat embryo cells. Although the TAD and DBD mutants both function as transdominant inhibitors, they work through different mechanisms and with different inhibitory potencies. The DBD mutants, which function by inhibiting DNA binding, are relatively weak inhibitors, whereas the TAD mutants inhibit by quenching and are much more potent. Dimerization assays demonstrate that mutations in the DBD decrease the dimerization affinity of these mutants with cJun. These results demonstrate that the most potent dominant-negative mutants of cJun are proteins that have intact DBDs and quench the activity of the endogenous transcription factors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global gene expression analysis of estrogen receptor transcription factor cross talk in breast cancer: identification of estrogen-induced/activator protein-1-dependent genes.

There is a growing body of literature supporting estrogen's ability to affect gene expression through a nonclassical pathway, in which estrogen receptor (ER) modulates the activity of other transcription factors such as activator protein (AP)-1, specificity protein (Sp-1), or nuclear factor-kappaB (NFkappaB). We hypothesized that many estrogen-induced genes are dependent on AP-1 for their expre...

متن کامل

Thimerosal induces apoptosis in a neuroblastoma model via the cJun N-terminal kinase pathway.

The cJun N-terminal kinase (JNK)-signaling pathway is activated in response to a variety of stimuli, including environmental insults, and has been implicated in neuronal apoptosis. In this study, we investigated the role that the JNK pathway plays in neurotoxicity caused by thimerosal, an ethylmercury-containing preservative. SK-N-SH cells treated with thimerosal (0-10 microM) showed an increas...

متن کامل

Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli

MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study...

متن کامل

Transrepression of c-jun gene expression by the glucocorticoid receptor requires both AP-1 sites in the c-jun promoter.

The c-jun protooncogene encodes a nuclear protein, cJun, which is a major component of the AP-1 transcription factor. AP-1 regulates various aspects of cell proliferation and differentiation. As an immediate early response gene, the expression of the c-jun gene is affected by various extracellular stimuli, such as serum, phorbol esters, and glucocorticoids. In mouse L929 fibroblasts, dexamethas...

متن کامل

Study the Expression of marA Gene in Ciprofloxacin and Tetracycline Resistant Mutants of Esherichia coli

MarA activates two membrane dependent mechanisms of resistance to different antibiotics, such as ciprofloxacin and tetracycline, including promotion of outflux and inhibition of influx of antibiotics. Thus, MarA causes multiple antibiotic resistance phenotype. The activation of these mechanisms needs overexpression of marA. This could happen through mutation in marR. Thus, the aim of this study...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research

دوره 7 8  شماره 

صفحات  -

تاریخ انتشار 1996